A linear second-order unconditionally maximum bound principle-preserving BDF scheme for the Allen-Cahn equation with a general mobility
主 讲 人 :侯典明 副教授
活动时间:09月22日09时30分
地 点 :理科群1号楼C-105室
讲座内容:
In this talk, we will present and analyze a linear second-order numerical method for solving the Allen-Cahn equation with a general mobility. The proposed fully-discrete scheme is carefully constructed based on the combination of first and second-order backward differentiation formulas with nonuniform time steps for temporal approximation and the central finite difference for spatial discretization. The discrete maximum bound principle is proved of the scheme by using the kernel recombination technique under certain mild constraints on the ratios of adjacent time step sizes. Furthermore, we rigorously derive the discrete $H^{1}$ error estimate and energy stability for the classic constant mobility case and the $L^{\infty}$ error estimate for the general mobility case. Various numerical experiments are also presented to validate the theoretical results and demonstrate the performance of the proposed method with a time adaptive strategy.
主讲人介绍:
侯典明,江苏师范大学数学与统计学院副教授,硕士生导师。2013年本科毕业于新疆大学,2019年博士毕业于厦门大学,计算数学专业;2021年8月至2023年8月,香港理工大学应用数学系博士后。主要研究领域为偏微分方程数值解法和相场模型的保结构算法设计与分析,在Math. Comput. SIAM J. Sci. Comp., J. Sci. Comp., J.Comp. Phys.等计算数学知名期刊上发表学术论文十余篇,主持完成国家和江苏省自然科学青年基金各一项。